

Draft of August 18, 2000 1

A Replica Management Service

for High-Performance Data Grids

The Globus Data Management Group

http://www.globus.org/datagrid

1 Introduction...2

2 Motivating Examples..3

2.1 Objectivity Databases in Physics Experiments...3

2.1.1 Use of Objectivity ...3

2.1.2 Inter-Database References...4

2.1.3 Database Updates..5

2.2 Climate Model Data..6

3 Building Blocks...7

4 Proposed Replica Management Solution ..7

4.1 Assumptions..8

4.2 Session Management...10

4.2.1 globus_replica_management_handleattr_init()...10

4.2.2 globus_replica_management_handleattr_destroy()10

4.2.3 globus_replica_management_handleattr_set_cas()...................................10

4.2.4 globus_replica_management_handleattr_get_cas()11

4.3 Catalog Creation..11

4.3.1 globus_replica_management_filespec_init() ..11

4.3.2 globus_replica_management_filespec_add() ..11

4.3.3 globus_replica_management_filespec_destroy()12

4.3.4 globus_replica_management_collection_create().....................................12

4.3.5 globus_replica_management_location_create()..12

4.3.6 globus_replica_management_file_register()...13

4.3.7 globus_replica_management_file_publish() ...14

4.4 File Maintenance...17

4.4.1 globus_replica_management_file_copy() ...17

Draft of August 18, 2000 2

4.4.2 globus_replica_management_file_delete() ...17

4.4.3 globus_replica_management_restart() ..17

4.4.4 globus_replica_management_rollback() ...17

4.5 Remaining Issues...18

4.5.1 globus_replica_management_file_update() ..18

4.5.2 globus_replica_management_file_is_current()...18

4.6 Data Transfer Protocol Extensions..18

4.6.1 Partial Updates..19

4.6.2 Fault Management and Restart..19

4.6.3 Compression..19

4.7 Implementation Approach...19

4.8 Storage System Requirements...20

4.9 Consistency of Replicated Files..20

5 Ideas for Phase 2 Development...21

6 Proposed Experimental Approach...21

7 Complementary Activities...22

Acknowledgments...22

1 Introduction
In many scientific disciplines, a large community of users requires remote access to large
datasets. An effective technique for improving access speeds and reducing network loads
can be to replicate frequently accessed datasets at locations chosen to be “near” the
eventual users. However, organizing such replication so that it is both reliable and
efficient can be a challenging problem, for a variety of reasons. The datasets to be moved
can be large, so issues of network performance and fault tolerance become important.
The individual locations at which replicas may be placed can have different performance
characteristics, in which case users (or higher-level tools) may want to be able to discover
these characteristics and use this information to guide replica selection. And different
locations may have different access control policies that need to be respected.

These considerations motivate this proposal for a replica management system charged
with managing the copying and placement of files in a distributed computing system so
as to optimize the performance of the data analysis process. Our goal in designing this
service is not to provide a complete solution to this problem but rather to provide a set of
basic mechanisms that will make it easy for users, or higher-level tools, to manage the
replication process.

Our proposed replica management service provides the following basic functions:

Draft of August 18, 2000 3

• The registration of files with the replica management service.

• The creation and deletion of replicas for previously registered files.

• Enquiries concerning the location and performance characteristics of replicas.

• The updating of replicas to preserve consistency when a replica is modified.

• Management of access control at both a global and local level.

The proposed service builds on components provided by the Globus Toolkit, specifically
the public-key-infrastructure-based Grid Security Infrastructure, the Replica Catalog
Service, the Grid Information Service, and the GSI-FTP extensions to FTP.

In this document, we first describe the requirements of two different application domains,
high-energy physics and climate modeling, which motivate the replica management
service design. We then provide first a detailed description of a set of low-level Phase 1
replica management functions, followed by some early thoughts on more sophisticated
higher-level Phase 2 services.

A note on the word “ replica” : The word replica has been used in a variety of contents
with a variety of meanings. For example, it is sometimes used to mean “a copy of a file
that is guaranteed to be consistent with the original, despite updates to the latter.” For the
purposes of this document, we define a replica to be simply a managed copy of a file.
The replica management system controls where and when copies are created, and
provides information about where copies are located. However, the system does not
make any statements about file consistency. In other words, it is possible for copies to
get out of date with respect to one another, if a user chooses to modify a copy.

2 Motivating Examples
We present two examples of application domains in which we believe our replication
service can be useful.

2.1 Objectivity Databases in Physics Experiments
Particle physics experiments are characterized by the need to perform analysis over large
amounts of data. To enable the selection of the data of interest, and to simplify the
development of analysis codes, several such experiments (ATLAS, BaBar, CMS), have
selected object-oriented technology as a structured file representation for storing the
physics data to be analyzed. Users at many sites worldwide then need to be able to
access data contained in these databases.

2.1.1 Use of Objectivity
In the physics experiments of interest, Objectivity (http://www.Objectivity.com/) is the
database technology that has been selected for data storage. Objectivity stores collections
of object in a single file called a database. Databases can be grouped into larger
collections called federations. Objects in one database can refer (point) to objects in
another database in the same or a different federation. In the physics experiments we are
considering, each database file is several gigabytes in size. Federations are currently

Draft of August 18, 2000 4

limited to 64K files, however, future versions of Objectivity will eliminate this
restriction. Some experiments plan to exploit this feature and anticipate creating
federations with millions of individual database files.

There are two types of data generated by physics experiments:

• Experimental data that represents the information collected by the experiment.
There is a single creator of this data, and once created, it is not modified.
However, data may be collected incrementally over a period of weeks.

• Metadata that captures information about the experiment (such as the number of
events) and the results of analysis. Multiple individuals may create metadata.
The volume of metadata is typically smaller than that of experimental data.

The consumers of the various types of data can number in the hundreds or thousands.
Because of the geographic distribution of the participants in a particle physics
experiment, it is desirable to make copies of the data being analyzed so as to minimize
the access time to the data. This replication is complicated by several factors, e.g.:

• Complete data sets can be very large. Thus one may need to replicate only
“ interesting” subsets of the data. However, because of the way Objectivity is
being used by the various physics experiments, the subsets of the data that need to
be updated may span many database files, or even many federations.

• Database files may be modified. One cause for this is that the write time into
database files can be quite large. In some experiments (Babar,
http://www.slac.stanford.edu/BFROOT/), it can take several weeks to collect an
entire data set. However, one would like to make data available incrementally,
potentially every few days.

One approach to this distribution problem would be to use existing Objectivity methods
for distributing database files in a federation across multiple machines. However,
Objectivity was not designed to operate in the regime of wide-area, very high
performance networks. Discussions with engineers within Objectivity (Harvey Newman,
personal communication) confirm that this is not a recommended approach. Hence, we
believe that our replica management service may represent a better approach.

2.1.2 Inter-Database References
One issue that has the potential to complicate the replication process is that Objectivity
keeps track of where objects exist within a federation by building a catalog. It is possible
to move a database from one federation to another (e.g., federations at different sites) by
performing an export from the first federation followed by an import into the second. We
note that maintenance of the catalog depends on the name of the database file, and not the
contents. Therefore catalog operations can take place concurrently with data movement
operations.

One potential problem in the export/import strategy is the existence of cross database
pointers. Five distinct strategies have been proposed to address this problem:

1. Ignore the problem, with the knowledge that cross database links may be broken
in a replicated file.

Draft of August 18, 2000 5

2. Identify cross-database references, and null them out, creating a self-contained
database file, with the loss of some information.

3. Insure that whenever any database file is moved, all of the databases that may be
referred to by this database are moved as well. This requires using database
schema to identify the complete set of inter-dependent files.

4. Generate an intermediate database file that contains all objects of interest,
including external references. This method can be viewed as an optimization of
the previous method, with the advantage of reducing the amount of data that may
be transferred. The disadvantage of this method is increased complexity in
keeping track of replica location and potentially reducing the effectiveness of data
caches.

5. Replace the interobject references with “ remote references” that can be resolved
via a (slow) inter-site object access mechanism. (This is basically a variant of #1,
in which we have a global name space for object identifiers and can use the
catalog to work out where “nonlocal” databases are located. This is what BaBar
does, for example.)

We note that all five methods are equivalent from our perspective: if any of them is
adopted, then all can employ our proposed replication mechanism, which enables the
copying of a set of databases files from one location to another.

2.1.3 Database Updates
Another potentially complicating issue is that while in principle the primary databases
produced by physics experiments are read-only (once created, their contents do not
change), we find in practice that during initial production of the data (a period of several
weeks) database files change as new objects are added. Users want access to these
database files during this production period, so we face a need for updating of replicated
database files. In addition, metadata may be either modified, or augmented over time.

Different experiments tend to use Objectivity in different ways and hence have somewhat
different requirements in this area. We explain the requirements in two experiments,
BaBar and CMS.

2.1.3.1 BaBar
In BaBar, objects are appended to the databases in a federation over the course of several
weeks. The practical impact of these logical append operations is that many database
files can be changing simultaneously during this period, as they fill up, after which they
do not change further. Individual database files are around ten GB in size, currently, due
to an Objectivity limit of 64K files, due to be removed at the end of 2000; the goal is to
reduce this size to O(1) GB, in which case there will be millions of files. In the latter
case, updates to files during the production phase will become less of a problem.
Metadata files are currently 2 GB in size and will also become smaller.

The following figure shows the sort of database structure used in BaBar. Different sites
maintain identical catalogs, with some catalog entries referencing local copies of database
files and others referencing remote copies. In (b), we see the result of replicating

Draft of August 18, 2000 6

database file 36 at Site 2: the file is copied and the catalog at Site 2 is updated to
reference the local copy.

���������	��
 ���������	��

�� ��� ��� ��

���������	��
 ���������	��

�� ��� ��� �����

��������� ���������

���������

���� ���!	"�#

$�%

&�'�(�)�*

+-,/.

+�0�.

A master-slave model is used to propagate modifications. During the production period,
updated (whole) files are transmitted to destination locations once a week. They would
like these updates to occur more frequently: say once every three days. The frequency of
updates is constrained by trans-Atlantic bandwidth.

A master-slave model is also used to control update access to databases containing
metadata. These semantics are provided by partitioning the object identifier space, so
that each participating site has exclusive write access to a predefined subset of objects in
the federation.

2.1.3.2 CMS
The CMS collaboration has adopted a different approach to the use of Objectivity, in
which data files do not change once created. However, metadata files do change to
reflect the increasing total number of events in the database. Metadata updates need to be
propagated to all replicas.

The CMS collaboration are interested in supporting distribution of “partial databases”
containing only those objects of interest to a particular scientist. We do not address this
requirement in this document.

2.2 Climate Model Data
In the climate modeling community, modeling groups sometimes generate large
“ reference simulations” that are then of interest to a large international community. The
output from these simulations can be large (many Terabytes). The simulation data is
typically generated at one or more supercomputer centers and is then “ released” in stages
to progressively larger communities: first the research collaboration that generated the
data, then perhaps to selected colleagues, and eventually to the entire community.

Draft of August 18, 2000 7

In contrast to the physics community, data is not maintained in databases but rather as flat
files, typically structured using for example NetCDF, with associated metadata. In
addition, files are not updated once released. However, we believe that the basic
requirements for data distribution (replication) are sufficiently similar that a common
replica management service can be employed.

3 Building Blocks
Our proposed replica management service builds on two elements of the Globus data
management architecture:

1. Replica catalog, and associated APIs, for keeping track of the location of replicas.
This catalog maintains a mapping from a logical (i.e., global) file name to one or
more physical file names on different storage systems. For the API, see
http://www.globus.org/datagrid/deliverables/globus_replica_catalog/.

2. GridFTP, an FTP-based transport protocol (and associated APIs) for moving files
between two endpoints. The protocol and APIs are extensible. For example, we
can supply plug-ins that implement application-specific error handling
procedures, such as retries. Support for parallelism and striping is also planned.
See http://www.globus.org/datagrid/deliverables/ for details

In addition, we can take advantage of the following additional Globus services when
developing replica management functions:

3. The Grid Security Infrastructure (GSI) protocol and tools, used to provide single-
sign-on, public-key authenticated access to remote data and computers. GSI-FTP
uses this.

4. The Globus Resource Allocation and Management (GRAM) protocol for
accessing remote computation. We can use this, for example, to invoke remote
cataloging operations following successful completion of a replica creation.

5. The Grid Information Service (GIS), which provides Lightweight Directory
Access Protocol (LDAP) to information about the structure and state of storage
systems, computers, and networks

4 Proposed Replica Management Solution
We propose to develop a replica management service that will meet the requirements
listed above, i.e., Objectivity files in particle physics experiments as well as climate
model simulation output. Due to the complexity of this task we propose a staged
approach. In Phase 1, we will focus on providing “dumb” but efficient and reliable data
replication functions:

• Replica management functions: We will build on the Globus replica catalog and
GridFTP data transport services described above to provide basic functions for
creating, updating, locating, and deleting replicas of entire files. These basic
functions are “dumb”: they simply allow the user to request that a file be copied

Draft of August 18, 2000 8

from location A to location B. That is, they do not support any logic for
determining whether, when, where, or from where a replica should be created.

• Data transport extensions for failure recovery and updating transfers: Exploiting
the extensibility of the GridFTP infrastructure, we will build an error handling
module that supports retries and restarts in the event of link failures, plus an
update-specific transport that uses checksums to reduce the amount of data
transferred when updating a file.

These functions will make it possible to develop a variety of innovative functions during
a subsequent Phase II, for example automated replica selection functions. The definition
of these functions may well vary from application to application.

We now proceed to describe first the replica management functions and then the data
transport extensions that we propose to develop during Phase I. Some initial thoughts on
Phase II work are described in Section 5.

The following figure shows the general structure of the proposed system.

132/46587:9;46<;=
>?<A@CB DFEG9

H <JIK<ALM9N4ODP5QI

>C<J@CB DFEG9SRT9AI/9VUV<A7:<WI/4W1YX�Z

>?<A@CB DFEG9
[9V469WB�5VU
\ <WL^]NDFEG<

H \ Z`_�a�bcX
de9;4�9fbgLM9WIKhN@i5WL-4

>?<NhG4�9ALM4
XNBj2/UC_�D^I

Xk9AL-46DF9ABKlm@i=C9N46<
X;Bj2/UV_nD^I

1Y2o465Q7:9;46<N=
>?<J@CB DjEG9

H <JIK<JL-9;4�DF5QI

X;p/qNhGDPEGhr1Y@C@VB�DPEG9;46DF5QI/h

sutwvyxNz�v|{u}
~��y�c��� x

���c����� {���{Cznx

�Q���Wx����

�Q���Wx����

�3�/�6�Q�:�;�����
�?�A�?� �j�G�
 �W�����G���F�Q¡

�¢�/���W�£�V�6���
�C�A�?� �F�G�
 �J�¤�N�G�¥�j�W¡

¦¨§ �F�
©ª¡/«M� § �£�N���F�Q¡
 � §-¬ �F�G�

4.1 Assumptions
In designing the Globus replica management API, we made the following decisions and
assumptions:

• This is an API for functions that provide the core functionality necessary to do
replica management. It does not contain all of the bells and whistles that an end
user might want in a replica management API. Those features can be layered on
top of this API later.

• This API provides functions for managing replication for individual files. It does
not contain functions for managing multiple files. However, the latter can be
efficiently built on the former, as care was taken in this API to allow for caching of

Draft of August 18, 2000 9

session state across several single-file operations. The advantages of the single file
approach is that it simplifies the API and implementation, and it allows for various
multi-file approaches to be built on top of this basic API.

• The replica catalog must remain consistent at all times, including during copy
operations and after a failure. In other words, users of the catalog must continue to
be able to use the catalog, even during a replica management operation, or after a
replica management operation fails.

• If a replica management operation fails, all information necessary to roll back the
operation should be stored in the replica catalog.

• In order to provide consistency and rollback, we have introduced a “ rollback lock”
into the globus_replica_catalog library. This object class must be of type
“GlobusReplicaLocationFileLock” , or an extension of that object class. It lives in
the DIT under the location entries. At the beginning of any replica management
operation that modified a location file, the operation does an ldap_add of a file
lock entry under the appropriate location. Since ldap_add is atomic, if the add
fails then we have acquired the lock, and if it fails then we know somebody else is
currently working on the file. This file lock object class has a required attribute of
“ timeout” , which defines how long the lock is good for in GMT – this will allow
the lock to be safely broken after this timeout, particularly in the event of a failure.
If a replica management operation takes longer than the timeout, then it must
periodically ldap_modify the entry with a new timeout. In addition, this object
class will be extended by the globus_replica_management library to contain
rollback information. Before the replica management library does anything that
might need to be rolled back in the case of failure, it ldap_modifies the entry with
enough information to allow anyone to perform the rollback in case of failure.

• The management functions provide for concurrency control (i.e. through advisory
locking) amongst multiple users of the replica management API.

• A “Community Authorization Server” (CAS) is being defined in a separate
document. A CAS can optionally be used by this replica management library to
provide for easier management authentication and authorization amongst a multi-
institutional community of users.

The subsequent subsections define each function of the API in more detail. Briefly, there
are functions for:

Session management: There are a set of functions for creating, configuring, and
destroying session handles. This allows, for example, caching of connection states to
GridFTP and LDAP servers, so that multiple files can be managed efficiently through this
API.

Catalog creation: There are a set of functions for creating and populating a replica
catalog collection, and storage system locations within the collection.

File maintenance: There are functions for copying, updating, deleting, and checking
status of files amongst locations within a collection.

Draft of August 18, 2000 10

We will also provide functions for controlling who can access, and make replicas of,
individual files and collections of files.

In addition, we note that the underlying replica catalog API provides us with the
following useful function:

globus_replica_catalog_location_search_filenames: Return the locations of a specified
logical file (or files).

Notice that none of these functions are not specific to any specific application: they
simply manage the movement and registration of copies of files. In the case of
Objectivity-based applications, it is the responsibility of the application to identify the
objects that need to be managed, map the object identifiers to one or more database files,
and then invoke our functions to access or copy those files.

4.2 Session Management
The following subsections describe functions to create, configure, and destroy session
handles. A handle has the type globus_replica_management_handle_t, and must be
threaded through the other replica management functions. It contains configuration and
state information about the management operation in progress, and allows for session
state (e.g. connections to GridFTP and LDAP servers) to be cached between management
operations.

A handle attribute structure, globus_replica_management_handleattr_t, can be used to
configure a handle, for example, with security information, performance tuning hints, etc.
The set of handle attribute options will grow over time, including attributes that are
inherited from the globus_ftp_client and globus_replica_catalog APIs.

4.2.1 globus_replica_management_handleattr_init()
globus_result_t
globus_replica_management_handleattr_init(
 globus_replica_management_handleattr_t * handleattr);

Initialize a handle attribute structure.

4.2.2 globus_replica_management_handleattr_destroy()
globus_result_t
globus_replica_management_handleattr_destroy(
 globus_replica_management_handleattr_t * handleattr);

Destroy a handle attribute structure.

4.2.3 globus_replica_management_handleattr_set_cas()
globus_result_t
globus_replica_management_handleattr_set_cas(
 globus_replica_management_handleattr_t * handleattr,
 char * cas_url);

Draft of August 18, 2000 11

Set the Community Authorization Server (CAS) field in the handle attribute.

4.2.4 globus_replica_management_handleattr_get_cas()
globus_result_t
globus_replica_management_handleattr_get_cas(
 globus_replica_management_handleattr_t * handleattr,
 char ** cas_url);

Get pointer to the Community Authorization Server (CAS) information from the handle
attribute. The returned cas_url must not be modified by the user, and should not be freed.

4.3 Catalog Creation
The following subsections describe a set of functions for creating replica catalog
collections, creating locations within a collection, and populating that collection and
location with new or existing files.

4.3.1 globus_replica_management_filespec_init()
globus_result_t
globus_replica_management_filespec_init(
 globus_replica_management_filespec_t * filespec);

Initialize a file specification structure.

A file specification is a set of one or more file expressions, which name a set of files. In
the initial implementation, a file specification is used to help maintain access control
policies, while in later implementation it will likely be extended to use by the replica
catalog to more concisely express large collections.

4.3.2 globus_replica_management_filespec_add()
globus_result_t
globus_replica_management_filespec_add(
 globus_replica_management_filespec_t * filespec,
 char * file_expression);

Add the expression to the file specification. This expression defines file names within a
context, where the context is defined in whatever function uses the filespec. For
example, a context might be a particular directory within a particular storage server, so
the filespec defines a set of files within that directory.

The expression is simply a filename, with optional wildcards of “* ” . The following are
example expressions:

• “ * ” :all files within the context.

• “ file* ” : all files whose names start with “ file” within the context

• “dir/* ” : all files in the “dir” subdirectory within the context

• “dir* /* ” : all files within any directory whose name starts with “dir”

Draft of August 18, 2000 12

• This expression language will be improved in the future.

4.3.3 globus_replica_management_filespec_destroy()
globus_result_t
globus_replica_management_filespec_init(
 globus_replica_management_filespec_t * filespec);

Destroy the file specification.

4.3.4 globus_replica_management_collection_create()
globus_result_t
globus_replica_management_collection_create(
 globus_replica_management_handle_t * handle,
 char * collection_url,
 char * objectclass);

Create an empty collection (i.e. with no filenames in it), with default access control
rights.

The caller must have the authorization to create the appropriate collection object in
LDAP.

4.3.5 globus_replica_management_location_create()
globus_result_t
globus_replica_management_location_create(
 globus_replica_management_handle_t * handle,
 char * collection_url,
 char * location_name,
 char * objectclass,
 char * root_dir_url,
 globus_replica_management_filespec_t * filespec);

Create an empty storage system location (i.e. with no files in it) within a collection.

The caller must have authorization to create the storage system directory, root_dir_url,
and to add a location to the replica catalog collection.

Parameters:

• handle: The session handle.

• collection_url: The LDAP URL of the collection in which to add the new location

• location_name: The name to use for this location within the replica catalog. This
name must be unique within this collection.

• objectclass: The LDAP object class to use for the location object in the replica
catalog. This must either be “GlobusReplicaLocation” , or the name of an object
class that extends “GlobusReplicaLocation” .

Draft of August 18, 2000 13

• root_dir_url: This is an URL which is the directory in the storage system in which
the files of this collection will reside. This becomes the “URL constructor” of the
location. For example, “gsiftp://host.org/directory” .

• filespec: A specification of what files can be named within the root_dir_url.

Approach:

• If a CAS is defined for this handle, then connect to the CAS, and create a new
access control entry for <root_dir_url>/<filespec>, with default access rights. The
CAS will verify that this new entry does not violate global access control policies
of the community, and does not clash with any existing access control policies.
Then get an authorization credential from the CAS to modify the replica catalog
collection, and to create and access the storage system root_dir_url.

• Create or verify the existence of the storage system directory defined by
root_dir_url.

• Add the location object to the replica catalog collection.

4.3.6 globus_replica_management_file_register()
globus_result_t
globus_replica_management_file_register(
 globus_replica_management_handle_t * handle,
 char * collection_url,
 char * location_name,
 char * filename);

Register an existing file from storage server into a collection and location.

This function is used to build a replica catalog collection. It does not copy the file.
Rather, the file already exists on a storage system which is referenced by a replica catalog
location. The “ filename” parameter is interpreted relative to the url constructor from the
replica catalog location. In other words, the complete url for the file is derived by
combining the url constructor from the replica catalog location specified by
location_name parameter, with the filename parameter.

The filename is added to both the replica catalog location and collection objects, as
required.

The caller must have authorization to add a filename to the replica catalog collection and
location, to read the file from the storage system.

Parameters:

• handle: The session handle.

• collection_url: The LDAP URL of the collection in which to add the new file.
This collection must already exist before this function is used, for example by
calling globus_replica_management_collection_create().

Draft of August 18, 2000 14

• location_name: The name of the location within the replica catalog to which the
file should be added. This location must already exist before this function is used,
for example by calling globus_replica_management_location_create().

• filename: The filename of file to add. This file must exist within the storage
system directory referred to by the url constructor of this replica catalog location.
The filename must also match the file specification for this replica catalog
location.

Approach:

• If a CAS is defined for this handle, get an authorization credential from the CAS to
query and modify the replica catalog collection and location.

• Query the replica catalog to get the url_constructor for the replica catalog location.

• If a CAS is defined for this handle, get an authorization credential from the CAS to
read the file “url_constructor/filename”.

• Verify that the caller can read the url_constructor/filename from the storage
system. If this fails, then return error with no rollback necessary.

• If the filename is not already part of the collection, then add it to the collection. If
this fails, then return error with no rollback necessary.

• If the filename is not already part of the location, then add it to the location. If this
fails, then return error with no rollback necessary. (Question: Do we need to
rollback the collection addition in this case? It won’ t harm anything to leave it
there. And if we do want to rollback, then we need to introduce new locking
structures at the collection level, and not just at the location level.)

4.3.7 globus_replica_management_file_publish()
globus_result_t
globus_replica_management_file_publish(
 globus_replica_management_handle_t * handle,
 char * collection_url,
 char * source_url,
 char * dest_location_name,
 char * filename,
 globus_replica_management_overwrite_behavior_t overwrite_behavior);

Publish a file into a collection and location, by copying that file from its source into the
storage system and updating the replica catalog.

This function is used to build a replica catalog collection. But unlike
globus_replica_management_file_register(), this function does copy the file from its
existing location into the storage system. The source file is passed as a parameter, and
the destination is derived by combining the url constructor from the replica catalog
location specified by dest_location_name parameter, with the filename parameter.

The filename is added to both the replica catalog location and collection objects, as
required.

Draft of August 18, 2000 15

This function can be called at a location distinct from the source and destination file
systems.

Throughout the operation of this function, and even in the event of failure, the replica
catalog will remain consistent. That is, any files that are listed in a replica catalog
location are complete and uncorrupt (barring spontaneous corruption of a file by a storage
system). Pending operations on files are locked, and their state is checkpointed to the
replica catalog, so that in the event of failure this function will leave rollback/cleanup
information in the replica catalog. This information can then be used by either the same
or a different client to rollback/cleanup any debris left around by the failure.

The caller must have authorization to add a filename to the replica catalog collection and
location, and to write the file to the storage system. The caller must also be able to read
the source file using his/her own credentials.

A return value of GLOBUS_SUCCESS indicates that the function succeeded. Any other
value indicates failure, in which case the globus_error functions can be used to inquire
for more information about the cause of the error.

Parameters:

• handle: The session handle.

• collection_url: The LDAP URL of the collection in which to add the new file.
This collection must already exist before this function is used, for example by
calling globus_replica_management_collection_create().

• source_url: The file that is to be published into the replica catalog, and copied into
the replica catalog location’s storage system. The url can have one of the
following schemes: “ file:” , “ ftp:” , or “gsiftp:” .

• dest_location_name: The name of the location within the replica catalog to which
the file should be added. This location must already exist before this function is
used, for example by calling globus_replica_management_location_create().

• filename: The filename that this file should be given within the location’s storage
system. The filename must also match the file specification for this replica catalog
location.

• overwrite_behavior: This parameter specified the behavior to take if the file
already exists in the storage system defined by the location. The options are:

GLOBUS_REPLICA_MANAGEMENT_OVERWRITE_DISALLOW: If the file
already exists, then this function should return an errors, and not modify either the
file or the replica catalog.

G LOBUS_REPLICA_MANAGEMENT_OVERWRITE_SAFE: If the file
already exists, then copy the file to the storage system using a temporary name,
and then rename it when the copy is complete. If a failure occurs, then the original
file will be left intact. The original file will also remain available via the replica
catalog during the transfer.

Draft of August 18, 2000 16

G LOBUS_REPLICA_MANAGEMENT_OVERWRITE_UNSAFE: If the file
already exists, then copy the file to the storage system over the top of the existing
file. If a failure occurs, then the original file will be corrupted, and the rollback
will attempt to remove the original file. The file will be removed from the replica
catalog prior to starting the copy, and reinstated in the catalog after the copy
completes.

Approach:

• Verify that the caller can read source_url, using his/her own credential.

• If a CAS is defined for this handle, get an authorization credential from the CAS to
query and modify the replica catalog collection and location.

• Query the replica catalog to get the url_constructor for the replica catalog location.

• If a CAS is defined for this handle, get an authorization credential from the CAS to
read and write the file “url_constructor/filename”.

• Verify that the caller can cd to the url_constructor directory on the storage system.
If this fails, then return error with no rollback necessary.

• Create lock (no rollback info) for filename under location entry. If this fails,
return error with rollback. (Rollback may be needed, if lock entry was created in
LDAP database, but the net dropped during the response.)

• Check to see if “url_constructor/filename” exists.
If it does not exist, then:
- set destfile to filename
- modify the rollback lock (remove destfile or restart transfer). If this fails, return
error with rollback.
If it does, and if overwrite_behavior is DISALLOW, then return error with no
rollback necessary.
If overwrite_behavior is SAFE, then:
- set destfile to filename.update
- modify the rollback lock (remove destfile or restart transfer). If this fails, return
error with rollback.
If overwrite_behavior is UNSAFE, then:
- set destfile to filename
- modify the rollback lock (remove destfile or restart transfer). If this fails, return
error with rollback.
- modify the location entry to remove the filename. If this fails, return error with
rollback.

• Perform third party transfer from source_url to destfile. If this fails, return error
with rollback.

• During the transfer, periodically:
- modify the rollback lock with restart progress and transfer performance
information
- callback user function with progress and performance information

Draft of August 18, 2000 17

• If the filename is not already part of the collection, then add it to the collection. If
this fails, then return error with rollback.

• If filename existed, and overwrite_behavior is SAFE, then rename destfile to
filename. If this fails, return error with rollback.
Else add the filename to the location. If this fails, then return error with rollback.

• Remove the lock. If this fails, then return error with rollback.

4.4 File Maintenance

4.4.1 globus_replica_management_file_copy()
globus_result_t
globus_replica_management_file_copy(
 globus_replica_management_handle_t * handle,
 char * collection_url,
 char * source_location_name,
 char * dest_location_name,
 char * filename,
 globus_replica_management_overwrite_behavior_t overwrite_behavior);

Copy a file from one replica catalog location to another, and update the replica catalog
destination location.

The parameters and approach of this function is the same as for
globus_replica_management_file_publish(), except that the source of the file in this case
is determined from the url contructor of the source location, combined with the filename.

4.4.2 globus_replica_management_file_delete()
globus_result_t
globus_replica_management_file_delete(
 globus_replica_management_handle_t * handle,
 char * collection_url,
 char * location_name,
 char * filename,
 globus_bool_t delete_file);

Remove filename from the replica catalog location, and if delete_file is GLOBUS_TRUE
than also remove the file from the storage system.

4.4.3 globus_replica_management_restart()
TBD: Define function which will get restart/rollback info from rollback lock, and restart
the operation…

4.4.4 globus_replica_management_rollback()
TBD: Define function which will get restart/rollback info from rollback lock, and restart
the operation…

Draft of August 18, 2000 18

4.5 Remaining Issues

4.5.1 globus_replica_management_file_update()
The previous version of this spec had a separate file_update() function. The only real
difference from file_copy() is that it may employ some optimized algorithm for doing the
update, such as modifying only those parts of the file that changed. Perhaps they should
be merged into a single function, with arguments controlling the different behavior. Here
is the previous text…

The function globus_replica_management_update_files updates a set of previously
replicated files: that is, it (a) updates a specified set of files on a specified destination file
system so that their contents are identical to those at a specified source storage system
and (b) updates the timestamp associated with the destination replicas in a specified
replica catalog. Notice that this specification permits both simple implementations that
simply copy the files in their entirety and more sophisticated implementations that
attempt to improve performance by transferring only the modified elements of a file.

This function is not responsible for deciding whether an update is required: it simply
updates the specified files. An application that wishes to use this function to update files
will typically consult metadata about specific replicas to determine whether “something”
has changed: e.g., timestamp or file size or checksum. An application-specific algorithm
may be required to obtain this metadata and perform the comparison. Checking to see if
a collection of files need to be updated is facilitated by the function

4.5.2 globus_replica_management_file_is_current()
Determine if a file at one location is current with respect to another location.

Arguments to this function are:

• Replica Catalog. LDAP URL to the catalog that is managing replica information.

• File list. List of logical file names that are to be checked for currency.

• Source. Name of the storage system from which data contains the “original” data.

• Destination. Name of the storage system to which contains copied data. Name of
a storage system as it appears in the replica catalog

• Comparison Callback. User-supplied function to be called with name of file to be
checked, replica entries for origional and copied file, and name of origional and
copy storage system. Function returns –1 if origional is to be updated, 0 if files
are equivalent, and 1 if copy need to be updated.

• Result Vector. Array of integers that reflect result of calling comparison function
on each file.

The function returns a 0 if comparison completed, an error code otherwise.

4.6 Data Transfer Protocol Extensions
We plan to investigate two specific extensions to our GSI-FTP data transfer protocol.

Draft of August 18, 2000 19

4.6.1 Partial Updates
We propose to extend GSI-FTP to use block checksum information on source and
destination copies of a file to determine which blocks need to be transferred during an
update operation. Details remain to be worked out, but we are confident that our GSI-
FTP implementation will support this.

Notice that this approach provides a particularly elegant integration of partial updates into
the replica management process, but that because it involves a protocol extension, it will
only be available on extended GSI-FTP servers. In particular, it will most likely not be
available in the HPSS pftpd, at least not initially.

Issue: Are checksums stored in the replica catalog? When are they updated? Are these
checksums passed as an argument to the GSI-FTP function, or exchanged by that
function?

4.6.2 Fault Management and Restart
Various failures can cause an FTP transmission to fail. Error handling capabilities build
into GSI-FTP can be used both to specify error-handling strategies (e.g., retries) and to
resume interrupted transfers. Only when this error recovery process is unsuccessful will
we signal an error via the replica management function error return code.

We note also here another capability that we may wish to incorporate into GSI-FTP in the
future. It has been observed that for large data transfers, the 16-bit checksum associated
with TCP packets may not be sufficient. To address this problem, we can build data
integrity checking into GSI-FTP. (Vern Paxson of LBNL measured that the Internet
corrupts 1 out of every 5000 packetsi, and observed that “A corruption rate of 1 packet in
5,000 is certainly not negligible, because TCP protects its data with a 16-bit checksum.
Consequently, on average one bad packet out of 65,536 will be erroneously accepted by
the receiving TCP, resulting in undetected data corruption. If the 1 in 5000 rate is
correct, then about one in every 300 million Internet packets is accepted with corruption
– certainly many each day.” For large data transfers, an IP packet typically contains 64
Kbytes of data. So if one in every 300 million packets is corrupt, then for every 19.2
Terabytes transferred, there will be one undetected error.)

4.6.3 Compression
We could also incorporate support for on-the-fly compression during transfer. However,
it is not clear how useful this is.

4.7 Implementation Approach
We propose to prototype our replica management functions as Perl scripts, in order to
permit rapid exploration of alternative strategies. Second choice of implementation is to
provide a Java binding.

Draft of August 18, 2000 20

4.8 Storage System Requirements
We require the following capabilities in any storage system to be used by our replica
management system:

• GSI-FTP support, hence enabling single sign-on access for users with suitable
GSI credentials. This requirement implies a need for a GSI-FTP-enabled server
on the storage system (GSI-FTP-enabled servers exist for regular FTP, HPSS, and
Unitree to date). The GSI-FTP server must be configured so as to accept the
certificate authorities used by the particular user community being supported.

• Information service support (specifically, a storage system Grid Resource
Information Service, or GRIS), so that remote users can enquire about storage
system performance, available storage space, etc.

• Logging of all transactions for audit purposes.

• User and group level access control on a per-file level. Access control should be
with respect to distinguished names contained in the certificate used to
authenticate to the storage system. Group membership will be provided via a
group authentication service. Initial implementation of this will be simply a
group file that will be maintained by each experiment and distributed to each
storage system using GSI-FTP.

In the future, we will also want the storage system to support advance reservation of
space and bandwidth.

4.9 Consistency of Replicated Files
Our proposed replica management system layers on top of other data management
systems. Hence, we cannot guarantee the persistence or integrity of any replicas that we
create. As a result of, for example, failure, the actions of another user with appropriate
privileges, or an automated cache management system, replicas may be deleted or
modified.

Such problems can be mitigated but not entirely prevented via techniques such as the
following:

• Access control. By denying delete and update access to other users, one can
ensure that the replicated files will not be removed or modified on the target
system. Note however, that in the situation that the target is managed as a data
cache, system policy may delete files even if delete access is denied to other
users.

• Advisory locks. Additional attributes could be associated with replicas indicating
that they are currently “ in use.” It would be up to community convention not to
delete files with this advisory lock set.

• Replica time to live. A refinement of the above strategy, this method associates a
time-to-live value with each replica. This value could be updated periodically.
The time to live approach is more resilient to application failure than advisory
locks.

Draft of August 18, 2000 21

In the case of Objectivity applications, we also observe that in the situation in which
remote database references are used, a replication operation may change the contents of a
catalog for a file that is in use. Such changes have been demonstrated to crash
Objectivity applications. Thus the local import functions must lock the catalog, perform
the catalog update as an atomic transaction, and then notify all active applications to re-
read the catalog so as to have an accurate view of the federation state.

5 Ideas for Phase 2 Development
We suggest here some of the features that might be incorporated into higher-level
functions during Phase 2 of this project. Note that in contrast to Phase 1 activities, some
of the functionality required here may well be application-dependent.

Incorporation of advance reservation. The Globus architecture addresses advance
reservation issues via its General-Purpose Architecture for Reservation and Allocation
(GARA) system. With appropriate support within storage systems, we can, for example,
ensure that there is sufficient space at a destination storage system for a transfer to
complete successfully.

Automatic selection of replica source locations. We can imagine a variant of the replica
creation function that does not require a “source” as an argument: instead, it consults to
replica catalog to determine where replicas are located, consults GIS to determine
relevant properties of those locations (e.g., transfer speeds), and then performs copies
from the “best” locations. Semi-automatic variants can also be defined. If these
techniques are used widely, then the performance and scalability of the replica catalog
becomes a significant concern.

Automatic selection of replica destination locations. Similarly, we can imagine a
function that monitors data access patterns and generates new replicas at selected
locations in order to reduce overall network load.

Support movement of complete logical collections. We have been asked to extend our
replica management API to include the function “Copy a complete logical collection to a
specified location.” Such a function might require accessing multiple source locations to
find all the files in the logical collection.

6 Proposed Experimental Approach
In order to gain early experience with the replica management functions described above,
we propose to experiment with their use within the BaBar experiment. We anticipate that
this experience in an operational setting will enable us to converge rapidly on a solid
design that can then be deployed more widely.

A first experiment will be simply to demonstrate the ability to move a single database
file from one Objectivity server to another using the replica management API. This step
will require implementing a subset of the functionality specified for the register, create,
and delete functions. We will deploy an initial replica catalog at ISI and two GSI-FTP
servers, one at SLAC and the other in France. Database catalog import and export
functions will also need to be provided.

Draft of August 18, 2000 22

7 Complementary Activities
• We note that the activities planned here enable a wide variety of complementary

activities. We hope to work with other groups to realize capabilities such as those
listed in Section 5 above as well as the following.

• Improved logging. The basic logging capabilities that we require in individual
storage systems can be extended to provide for distributed analysis of data access
patterns. Integration with logs generated by the replica management service itself
and with performance measurement tools will allow for monitoring and
improvement of performance. It will be desirable for logs to be maintained on
stable and secure storage in order to enable their use by intrusion detection
systems.

• Improved fault recovery. The replica management service should be improved
over time to incorporate increasingly sophisticated fault recovery. For example, it
may be desirable to be able to recover from a total loss of the contents of the
replica catalog, via reconstruction of the catalog from log records.

• Improved performance measurement. Our Phase 1 deliverables will incorporate
some basic performance measurement capabilities, but achieving consistently
high performance across transcontinental and intercontinental networks will
require more sophisticated measurement and monitoring support.

• Integration of dynamic container creation. As noted above, some groups are
interested in replication at the object level, via the creation and distribution of
“dynamic containers.”

• End-to-end scheduling. Reservation capabilities in the network as well as in
storage systems will allow for end-to-end scheduling of replica creation
operations.

Acknowledgments
This document reflects the results of a number of fruitful discussions:

• In Pittsburgh, involving Bill Allcock, Ann Chervenak, Ian Foster, Andy
Hanushevsky, Koen Holtman, Carl Kesselman, Asad Samar, Steven Tuecke, and
others.

• At Argonne National Laboratory, involving Ann Chervenak, Ian Foster,
Wolfgang Hoschek, Carl Kesselman.

• At SLAC, involving Jacob Becla, Ann Chervenak, Ian Foster, Andy
Hanushevsky, Carl Kesselman, Bob Jacobsen, Richard Mount, Harvey Newman,
Charles Young.

• Via email with numerous people including those named above and Fabrizio
Gagliardi.

Draft of August 18, 2000 23

i V. Paxson, End-to-End Internet Packet Dynamics, SIGCOMM ’97, LBNL-40488
(ftp://ftp.ee.lbl.gov/papers/vp-pkt-dyn-sigcomm97.ps)

